阳电提示您:看后求收藏(第一二〇章 分析,永不下车,阳电,新笔趣阁),接着再看更方便。
请关闭浏览器的阅读/畅读/小说模式并且关闭广告屏蔽过滤功能,避免出现内容无法显示或者段落错乱。
没有自主意识的计算机,即便顶着“人工智能”的名头,按理说,也无法与人的思维相比,这是方然以往的看法。
但话说回来,自我意识究竟是什么;
查看ASA提交的分析报告,并观察这一软件在网络上的行为特征,方然心生疑惑,他偶尔还禁不住会想,所谓“AI的自我意识”这种东西,究竟是不是如人工智能领域的专家们所说的那样,是人类短时间内无法触及的成就。
眼前,屏幕上的整齐字迹,就在透露出某种意识的迹象:
几个月来学习方然的工作模式,正式上线后,ASA系统一开始的调查速度并不快,在旁观者看来,就好像初次接入互联网络,在试探、熟悉周遭环境那样;接下来,按常规思路,ASA尝试外联若干已知的数据节点,同时从安全措施薄弱的服务器拉取信息列表,显然是为后续的信息获取做准备。
这些步骤,和人的行动模式差不多,只是效率更高。
基础科学部的计算资源,大部分依赖伯克利的公共大型机,必然有算力波动,作为后台程序的ASA展现出一定的智能性,会在网络空闲时大量截取数据,算力空闲时集中解密、分析处理,在存储空间紧张时则进行一次垃圾收集,很好的平衡了算力、带宽和空间,扪心自问,方然承认这是他做不到的。
即便这些工作的技术原理并不复杂,问题在于,人并没有AI那样强大的计算和记忆能力,即便清楚原理也做不来。
观察ASA的行为,对方然来说,逐渐成为一种略带消遣的日常工作。
但重要的还是分析结果,和看似有序的行为不同,ASA的报告,却让方然怀疑系统是不是出了什么问题:
站在人的立场,ASA在初始化后调取的数据,岂但是杂乱无章,有时候简直就是毫无道理,原本布置了追踪“匿名者”的任务,但是在从联邦公民信息系统(外联接口)和联邦电信节点获取大量数据后,软件就进入了四处开花的工作模式,开始侵入诸如宾夕法尼亚医疗结算中心、孟山都物流体系第143A7检查点、东太平洋水文气候监测站,甚至NASA俄勒冈射电观测阵列这些不知所云的机构。
在联邦调查一个人的行踪,固然需要大量数据,但……
真的需要这些风马牛不相及的东西吗。
建立在人工智能内核之上的ASA,一旦开始运行,身为管理员也只能看到若干接口送出的数据,对庞大软件架构内部的运行情况,即便动用能拿到手的最先进动态监控模块,面对规模超乎想象的状态码、存储器数据和访问日志,方然也只能徒唤奈何。
想一想也是,倘若这系统正在做的事,居然能被人通过接口数据分析的清楚明白,那他又要这ASA何用呢,干脆自己操纵还更保险。
开发软件,部署人工智能系统,作为AI的创造者、至少也是参与了工作的使用者,却无从掌握人工智能体系的具体运作,基于过往的积累,在与ASA打交道的过程中,方然对这类系统的黑盒子性质有了更直观、更深刻的理解,也部分理解了为什么一部分计算机、人工智能研究者,始终对AI心怀恐惧。
人创造出来的东西,却未必能被人控制,人工智能,原则上是存在这样的可能。
本章未完,点击下一页继续阅读。